If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+50X-240=0
a = 1; b = 50; c = -240;
Δ = b2-4ac
Δ = 502-4·1·(-240)
Δ = 3460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3460}=\sqrt{4*865}=\sqrt{4}*\sqrt{865}=2\sqrt{865}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{865}}{2*1}=\frac{-50-2\sqrt{865}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{865}}{2*1}=\frac{-50+2\sqrt{865}}{2} $
| -13x+4x=-39+26x | | 7y-1(2+9)=10 | | 3x-3.4=2x-2.8 | | 33x-2=81 | | 4/3x-13/3=(4x-13)/3 | | 2×+3y=22 | | ×+y=9 | | 3y=4y-1 | | 2.6-0.2x=4.1-0.5x | | 5=35x=21x+23 | | -4=2x=-16+11x | | 3(x-3=5x-4+3(7-x) | | 16x=10x-3 | | 10+8x=-18x+x | | 45=8u+40 | | 2x-1=x=3 | | 40=5v-15 | | 3X=0,5x+15 | | 18=8x-32 | | 4x-4=12x-16 | | N(2n+2)=420 | | 1/2*(-4x+2)=5-2x | | 20x+12=375 | | 5y-15=36 | | 7/4x=2/x+1 | | 15y+7=64 | | 8u+2=70 | | 3×q+12=5×q-4 | | X+5x5=60 | | 8x/3=65536 | | 6(2l+5)=114 | | 3y-14=6 |